Prediction of Spindle Rotation Error through Vibration Signal based on Bi-LSTM Classification Network
نویسندگان
چکیده
منابع مشابه
Bi-LSTM Neural Networks for Chinese Grammatical Error Diagnosis
Grammatical Error Diagnosis for Chinese has always been a challenge for both foreign learners and NLP researchers, for the variousity of grammar and the flexibility of expression. In this paper, we present a model based on Bidirectional Long Short-Term Memory(Bi-LSTM) neural networks, which treats the task as a sequence labeling problem, so as to detect Chinese grammatical errors, to identify t...
متن کاملconstructing gender identity through narratives based on hallidays metafunctions
هویت, شکل دادن و بازنمایی آن در گفتمان, توجه بسیاری از محققان این رشته را به خود جلب کرده است. تحقیق حاضر بر شکل دادن به هویت جنسیتی هشت تن از دانشجویان ایرانی مشغول به تحصیل در دوره کارشناسی ارشد از طریق بررسی روایات آنان از تجربیات شخصی, متمرکز شده است. تحلیل داده ها در این تحقیق مشتمل بر سه بخش است: بخش اول شامل کدگذاری موضوعی روایات است که بر اساس آن هویت جنسیتی شرکت کنندگان در تحقیق بر اسا...
15 صفحه اولAttention-based LSTM Network for Cross-Lingual Sentiment Classification
Most of the state-of-the-art sentiment classification methods are based on supervised learning algorithms which require large amounts of manually labeled data. However, the labeled resources are usually imbalanced in different languages. Cross-lingual sentiment classification tackles the problem by adapting the sentiment resources in a resource-rich language to resource-poor languages. In this ...
متن کاملSemantic Relation Classification by Bi-directional LSTM Architecture
Semantic relation extraction is a meaningful task in NLP that could provide some helpful information and semantic relation classification attracts many people to research it. This paper mainly introduces a Bi-direction LSTM (long short-term memory) deep neutral network and the parameter of embedding layer, and this network can solve the problem of over-fitting. And then according to the text of...
متن کاملUsing LSTM Network in Face Classification Problems
Many researches have used convolutional neural networks for face classification tasks. Aiming to reduce the number of training samples as well training time, we propose to use a LSTM network and compare its performance with a standard MLP network. Experiments with face images from CBCL database using PCA for feature extraction provided good results indicating that LSTM could learn properly even...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IOP Conference Series: Materials Science and Engineering
سال: 2021
ISSN: 1757-8981,1757-899X
DOI: 10.1088/1757-899x/1043/4/042033